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The thermodynamic driving force for bone
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The Eshelby stress (static energy momentum) tensor is derived for bone modelled as an
inhomogeneous piezoelectric and piezomagnetic Cosserat (micropolar) medium. The divergence
of this tensor is the configurational force felt by material gradients and defects in the medium.
Just as in inhomogeneous elastic media, this force is identified with the thermodynamic force
for phase transformations, in bone it is the thermodynamic cause of structural transformations,
i.e. remodelling and growth. The thermodynamic approach shows that some terms of driving
force are proportional to the stress, and some acting on material inhomogeneities are quadratic
in the stress—the latter outweigh by far the former. Since inertial forces due to acceleration
enter the energy–momentum tensor, it follows that the rate of loading matters and that both
tension and compression stimulate growth, which is favoured at heterogeneities.
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1. CONFIGURATIONAL FORCES IN BONE

From time to time, bone undergoes remodelling in a
cycle of osteoclastic and osteoblastic activity. Such
remodelling is stimulated by physical exercise, which
translates into mechanical stress on the skeleton. For a
long time (Wolff 1884, 1892, 1986), it has been known
that bone growth is stimulated by an applied mechan-
ical force. A modern version of these ideas is the
‘mechanostat’ of bone remodelling (Currey 2002).

Wolff’s law (1884, 1892, 1986) is the first example of
mechanotransduction, the effect of mechanical solicita-
tion on biological activity. External influence creates a
wondrous wealth of shapes (D’Arcy Thompson 1942).
For recent reviews on the tissue, muscular and cellular
levels of mechanotransduction, see Cowin (1990, 2004),
Hamil &Martinac (2001) and Kjaer (2003). Though the
fact that in principle mechanical loading stimulates
bone growth and remodelling has been known for 120
years, quantitative progress has been slow—the most
important discovery being that not only loading but
also the loading rate has an influence (Mosley &
Lanyon 1998; Goodship & Cunningham 2001).

The nature of the connection between mechanical
solicitation and biological response is still unclear. This
is due to the complexity of the problem, which can be
divided into three stages as follows.

(i) The external loading of the skeleton, be it static
or dynamic in walking, jumping, standing still, is
being transmitted through a complicated
orrespondence (lazar@fkp.tu-darmstadt.de).
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loading train via muscles, cartilage, macroscopic
bone architecture and mesoscopic structure
(cortical or trabecular) to the osteocytes.
These, in turn, control the remodelling process
that is carried out by bone absorbing osteoclasts
and bone depositing osteoblasts (Jee 2001). The
intermediate members of the loading train with
their mechanical characteristics of damping,
attenuation and time delay considerably modify
the external signal. The local situation of stress
and strain might well be very different from the
external signal applied. We are not aware of any
locally controlled or monitored experiment in
the sense that stress and strain were locally
followed and the ensuing biological activity
monitored. In principle, the problem of trans-
mission between macroscopic external loading
and local stress–strain conditions can be solved:
on the theoretical side with sophisticated
numerical simulations, and on the experimental
side by in situ measurements.

(ii) Assuming that these local mechanical par-
ameters become known, the question arises:
what is the thermodynamic driving force pro-
duced by stress and/or strain or their rates? The
purpose of the present paper is to provide an
answer to this question. At first sight, one might
surmise that growth, like bone plasticity might
be stress or strain driven (Nalla et al. 2003a,b)
in the sense that the stress tensor or the strain
tensor has a biological effect. Analogy with
solid mechanics indicates that the situation is
more complicated: as we will show, a certain
J. R. Soc. Interface (2008) 5, 183–193
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combination of the stress and strain tensors,
called the energy–momentum tensor (EMT),
and more precisely, the divergence of this
quantity, a vector, provide the thermodynamic
driving force, which is the stimulus for sub-
sequent biological activity.

(iii) The biological response to this driving force is
still another matter. It belongs to the domain of
nonlinear irreversible thermodynamics. Both
theoretically and experimentally, this response
is the real issue of mechanotransduction: how
the thermodynamic stimulus, identified by us,
conditions cellular activity. As physicists, we do
not address this side of the issue. Our work
merely identifies the proper input parameter for
the necessary biological study. The response
might well be rate controlled, whatever the
stimulus is. For example, the hydrodynamic
part of poroelasticity might be limiting the
biological response (Cowin 1999).

Another difficulty is the eminently hierarchical
structure of bone (Rho et al. 1998). Macroscopic
loadings can be surveyed, but the actual stress
distribution on the osteonic level is another matter.
Even the osteons, of less than millimetre size, are
inhomogeneous: they consist of 30–50 lamellae of a few
micrometres thickness, made up from collagen fibrils.
The appropriate level for discussing osteoclastic and
osteoblastic activity is not the skeletal but the
microscopic and micromechanical levels.

Our objective is to treat bone lamellae within the
framework of continuum mechanics. But what type of
continuummechanics? The stacking of the triple helices
of the tropocollagen molecules is quite complicated
(Fratzl 2003; essentially, a solidified two-dimensional
liquid in the plane normal to their lengths and a one-
dimensional crystal parallel to it), it is unlikely that it
could be perfect; the existence of defects must be
allowed for. In the continuum framework, this is taken
care of by admitting the existence of a dislocation
density; in other words, one allows for internal stresses
in addition to the external ones from loading (Kirchner
2006). Plasticity within and between the collagen fibrils
which constitute the lamellae is beyond the scope of this
paper (Puxkandl et al. 2002; Kirchner 2006;
Guptaet al., 2007), but the structural defects respon-
sible for it might be relevant for remodelling. The low
symmetry of the collagen assembly suggests that not
only displacements but also changes of spin must be
allowed for, the appropriate elasticity is micropolar
(Cosserat) elasticity (Maugin 1998). For the same low
symmetry reason, bone is also piezoelectric (Fukada &
Yasuada 1957; Fukada 1968). Finally, bone is hetero-
geneous, even on the osteonic level owing to the
orientation differences between lamellae, therefore, a
variation of the constitutive relations with position
must be allowed for. From a mechanical point of view,
remodelling is the transformation of old into
new material, akin to solid-state transformations
between phases (Rice 1975). It is known that the
influence of stress on such transformations is governed
by configurational forces (Eshelby 1951; Rice 1975),
J. R. Soc. Interface (2008)
which have also been called material forces (Maugin
1993; Fatemi et al. 2002). These, in terms, are derivable
from the EMT. Our programme is, therefore, to derive
explicitly the theory of the EMT for a dislocated
heterogeneous elastic, piezoelectric, magnetoelectric
micropolar medium thought to represent bone. For
pedagogical reasons, we proceed step by step from less
complicated to the most complicated medium.

The EMT is a central concept of field theory. A field
theory starts with the idea that at any point in space
there is a quantity, the ‘field’, scalar, vectorial or
tensorial, which creates an energy density (the ‘Hamil-
tonian’). Minimizing the energy with respect to the field
variables gives the Euler–Lagrange equations, called
field or balance equations. These, usually differential,
equations relate the field to its source.

By considering a slight shift of the field with respect
to the material (taking a ‘variational derivative’) with
the sources and the material kept fixed, one obtains new
balance equations. These relate, usually in differential
form, the EMT to configurational forces acting on the
sources and material inhomogeneities (Wenzel 1949;
Barut 1964; Maugin 1995).

Maxwell (1873) constructed the tensor in question for
electromagnetic fields, Eshelby (1951) constructed it for
elasticity, (Kluge 1969a,b) for Cosserat elasticity and
Cherepanov (1974) for piezoelectricity. Other general-
izations pertain to non-local micropolar (Lazar &
Kirchner 2006), gradient (Lazar & Kirchner 2007a)
and microcontinuum (Lazar & Anastassiadis 2006;
Lazar & Maugin in press) elastic field theories.

The formal theory will result in expressions that give
clues to what can cause remodelling. Our results will
show that some of the configurational (thermodyna-
mical, material) forces are proportional to the stress,
some proportional to its square. The latter seem
quantitatively more important than the former. It is
hoped that, once medical experiments will have decided
if remodelling responds to one or the other, conclusions
might be drawn about the micromechanical mechanism
of remodelling. For the time being, comparison with
structures is restricted to simulated ones (Weinkamer
et al. 2004).
2. ELECTROSTATICS

This is the paradigm of field theory, one considers the
EMT in its simplest form. The energy is

W Z
1

2

ð
DiEi d

3x; ð2:1Þ

where Ei is the electric field and Di is the electric
displacement. The integral is taken over the volume of
the body. For simplicity, we assume a linear relation-
ship between the electric displacement Di and the
electric field Ei

Di Z 3ijEj ; ð2:2Þ

where 3ij is the tensor of dielectric constants. Observe
here that the anisotropy permitted by allowing 3ij to be
a symmetric (and not a diagonal) tensor has no bearing
on the argument. The field equations are, with q being
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the electric charge,

viDi Z q and ð2:3Þ

ekjivjEi Z 0: ð2:4Þ

The latter equation implies that the electric field must
be the gradient of an electric potential V

Ei Z viV ; ð2:5Þ

which, in turn, implies that there is a certain symmetry
to the gradient of the electric field,

viEk Z vkEi: ð2:6Þ

Now let us take an arbitrary infinitesimal functional
derivative dW of the energy density. From equations
(2.1) and (2.2) we get

dW Z
1

2

ð
f½d3ij �EiEj C23ijEi½dEj �gd3x: ð2:7Þ

In the following, we want to get a configurational force,
therefore, we specify the functional derivative to be
translational (no summation on k):

dZ ðdxkÞvk : ð2:8Þ
On the left-hand side of equation (2.7), we write

dW Z

ð
dwd3x

ð
½vkw�ðdxkÞd3x

Z

ð
vi½wdik �ðdxkÞd3x; ð2:9Þ

with the energy density

w Z
1

2
DiEi: ð2:10Þ

On the right-hand side of equation (2.7), we have, by
using the symmetry (2.6),

dW Z

ð
Di½viEk �C

1

2
Ei½vk3ij �Ej

� �
ðdxkÞd3x: ð2:11Þ

The first term of equation (2.11) may be written with
(2.3) according to

Di½viEk �Z vi½DiEk �K½viDi�Ek

Z vi½DiEk �KqEk : ð2:12Þ

By equating equations (2.9) and (2.11), using equations
(2.10) and (2.12), we obtainð

viðwdikKDiEkÞd3x

Z

ð
KqEk C

1

2
Ei½vk3ij �Ej

� �
d3x Z Jk : ð2:13Þ

The second integral contains the sources of the electric
fields: the electric charge and the inhomogeneity of
the material. The integrand of the first integral in
equation (2.13) is the divergence of the EMT of
electrostatics

Pik ZwdikKDiEk : ð2:14Þ
J. R. Soc. Interface (2008)
In addition, the configurational force density is defined
as the divergence of the EMT

viPik ZFk ; ð2:15Þ
with the configurational (energetic) force

Fk ZKqEk C
1

2
Ei½vk3ij �Ej : ð2:16Þ

Already the simple electrostatic example shows the
characteristic feature that will reappear for all other
fields we will consider (elasticity, piezoelasticity and
Cosserat elasticity). If the material is not isotropic, the
EMT is not symmetric. The first term is the divergence
of the EMT, which is the configurational force, and is
proportional to the field (electrostatically Ek); the
second term is of quite another nature, being quadratic
in the field but proportional to the gradient of the
material constants (electrostatically the dielectric
constants 3ij). Even in simple electrostatics the EMT
is quite different from general relativity, where it is
symmetric and divergence-free (there is no anisotropic
constitutive law and configurational forces are absent).

The divergence of the EMT can be integrated out
with Gauss, and we find

Jk Z

ð
niPikd

2x: ð2:17Þ

If the variation of the dielectric constant is discontinu-
ous, and does not allow to form the gradient ½vk3ij �, the
usual argument of forming a penny-shaped volume
across the surface between two media I and II gives as
configurational force on the interface

Jk Z

ð
ni½PI

ikKPII
ik �d2x: ð2:18Þ

Here PI
ik and PII

ik are the EMTs on the sides I and II of
the interface, respectively.
3. ELASTOSTATICS

The introduction of the EMT to elasticity by Eshelby
(1951) is considered as one of the most important
advances of that field in the twentieth century. The
concept was extensively applied to fracture mechanics
by Cherepanov (1967) and Rice (1968). The elastic
energy is given by

W Z
1

2

ð
sijbijd

3x; ð3:1Þ

where sij is the stress and bij denotes the elastic
distortion (Kröner 1958). For simplicity, we assume a
linear relationship between the two, but, as in electro-
statics, that is not at all necessary. Hooke’s law for full
anisotropy reads

sij ZCijklbkl ; ð3:2Þ

where Cijkl is the tensor of elastic constants which
possesses only the symmetry

Cijkl ZCklij : ð3:3Þ

Observe that the fields are now tensorial, not vectorial
any more, and the constitutive law involves a tensor of
fourth order and not of second order. It should be noted
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that one can think of going from the electric to the
elastic case by adding on index in front: Dj/sij and
Ej/bij . The field equation is

vjsij Z fi; ð3:4Þ

and the incompatibility condition reads

ejklvkbil Zaij : ð3:5Þ

The latter equation implies that the dislocation density
tensor aij, which can be considered as the source of
the elastic distortion, must be divergence free in the
second index

vjaij Z 0: ð3:6Þ

The concept of a dislocation density aij does not depend
on the existence of a lattice, it is merely the curl of the,
in principle, measurable distortion field bij. When one
admits that bone is describable by continuum
mechanics, one is forced to allow, at least formally,
for the definition (3.5). Presumably, a dislocation
density is to interpret as some fault in order, for
example, in the highly correlated collagen sequences.
By multiplying equation (3.5) by emnj, one finds for the
elastic distortion

vmbinKvnbim Z emnjaij : ð3:7Þ

If no dislocations are present, the elastic distortion is
just the gradient of a displacement ui: bijZvjui.

Now let us take an arbitrary infinitesimal functional
derivative dW of the elastic energy density. From
equations (3.1) and (3.2), we get

dW Z
1

2

ð
f½dCijkl �bijbkl C2Cijklbij ½dbkl �gd3x: ð3:8Þ

As before we specify the functional derivative to be
dZðdxkÞvk and on the left-hand side of equation (3.8),
we write again

dW Z

ð
dwd3x Z

ð
½vkw�ðdxkÞd3x Z

ð
vi½wdik �ðdxkÞd3x;

ð3:9Þ

with the energy density

w Z
1

2
sijbij : ð3:10Þ

On the right-hand side of equation (3.8), we have

dW Z

ð
sijð½vkbijKvjbik �CvjbikÞ

�

C
1

2
bij ½vkCijmn�bmn

�
ðdxkÞd3x; ð3:11Þ

where the second and third terms have been sub-
tracted and added. The purpose is to obtain the square
bracket with the meaning of equation (3.7). The third
term may be written with (3.4) according to

sij ½vjbik �Zvj ½sijbik �K½vjsij �bik Zvi½sijbik �K fibik :

ð3:12Þ
J. R. Soc. Interface (2008)
By equating equations (3.9) and (3.11), using
equations (3.10) and (3.12), we obtain the expressionð

viðwdikKsliblkÞd3x

Z

ð
ekjlsijailK fibikC

1

2
bij ½vkCijmn�bmn

� �
d3xZJk :

ð3:13Þ
The second integral contains the sources of the elastic
fields: the dislocation density, the body force and the
inhomogeneity of the material. The integrand of
the first integral in equation (2.13) is the divergence
of the EMT of elasticity (Eshelby stress tensor)

Pik ZwdikKsliblk : ð3:14Þ
Again, the configurational force density is the diver-
gence of the EMT

viPik ZFk ; ð3:15Þ
with

Fk ZekjlsijailK fibikC
1

2
bij ½vkCijmn�bmn: ð3:16Þ

The first term is the so-called Peach–Koehler configura-
tional force on a dislocation density aij (Peach&Koehler
1950). The second term is the Cherepanov (1967)
configurational force on a body force fi , and the last
term, the Eshelby (1951) force on the elastic inhomogen-
eity vkCijmn. In §8 we will show that in bone, due to its
eminently heterogeneous microstructure, the last term is
by far the most important one.

As in electrostatics, the divergence of the EMT can be
integrated out with Gauss, and formula (2.17), but now
with Pik from equation (3.14) is valid. If the variation of
the elastic constant is discontinuous, and does not allow
to form the gradient ½vkCijmn�, formula (2.18) is appli-
cable, but with PI

ik and PII
ik being the EMTs (3.14) on the

sides I and II of the interface, respectively.
By now, the structure of the EMT has become clear:

it is the energy density in the diagonal minus the direct
product of the two (vector) electric fields, or minus the
(tensorial product) of the elastic fields (Kirchner 1999).
4. PIEZOELECTRIC MEDIUM

A combination of electric and elastic effects is the
situation of piezoelectricity. Since collagen and bone
are known to be piezoelectric, this is of some relevance.
In a piezoelectric medium, there exist not only the
electric field Ei andDi , and the mechanical fields bij and
sij independent of each other, but also the constitutive
relations couple the electric and mechanical fields. The
energy density is

w Z
1

2
3ijEiEj C

1

2
Cijklbijbkl CeijkbijEk ; ð4:1Þ

where eijk is the tensor of piezoelectric constants. The
constitutive relations are

sij ZCijklbkl CeijkEk and ð4:2Þ

Di Z ejkibjk C3ijEj : ð4:3Þ
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After algebraic manipulations, we obtain the EMT

Pik ZwdikK sliblkKDiEk ; ð4:4Þ
and its divergence, the configurational force density

Fk Z ekjlsijailK fibikKqEk C
1

2
bij ½vkCijmn�bmn

C
1

2
Ei½vk3ij �Ej Cbij ½vkeijm�Em: ð4:5Þ

We note that due to the electric part in the stress (4.2),
the Peach–Koehler force in a piezoelectric material
(first term in equation (4.5)) has an electric part.
Therefore, the Peach–Koehler force is caused by both
stress and electric fields on dislocations in a dislocated
elastic dielectric. This observation is in agreement with
Maugin & Epstein (1991) and Maugin (1993).
5. THE FIELD EQUATIONS FOR AN
INHOMOGENEOUS COSSERAT CONTINUUM
AND ELECTROMAGNETIC FIELDS

In classical elasticity, treated in §3, every point of the
body is just a point that suffers a displacement upon
deformation. From the point of view of solid mechanics,
because the smallest volume element of bone is to be
considered as a molecular crystal, each point is to be
associated also with a direction (the orientation of the
collagen). Upon deformation, each point not only
undergoes a displacement, but the orientation vector
changes as well. The appropriate formalism is the
Cosserat elasticity, in which, besides the asymmetric
force stress sij caused by the micropolar distortion gij

there exists also a couple stress mij caused by a wryness
tensor kij . Owing to the piezoelectric properties of bone,
one must also allow for the presence of electric fields, as
in §§2 and 4. The inclusion of magnetic fields of possible
therapeutic significance is straightforward.

The equilibrium equations for the elastic stresses
(force stress sij, couple stress mij) are

vjsij Z fi and ð5:1Þ

vjmijK eijksjk Z l i; ð5:2Þ

and the static Maxwell equations read (the electric
displacement Dj, the electric field Ej, the magnetic field
Hj and the magnetic induction Bj)

vjDj Z q; ð5:3Þ

ekjivjEi Z 0; ð5:4Þ

vjBj Z 0; and ð5:5Þ

ekjivjHi Z jk ; ð5:6Þ

where fi, li, q and jk are the body force, body couple,
electric charge density and current vector, respectively.
For the current vector, we have the conservation law

vkjk Z 0: ð5:7Þ
It can be seen in equation (5.2) that, in addition to body
couple, the skew-symmetric part of the force stress sij
J. R. Soc. Interface (2008)
gives a source term for the couple stress mij in a Cosserat
or micropolar elasticity. On the other hand, the force
stress sij has only the body force as source in equation
(5.1). The additional source term in equation (5.2) will
be important for the configurational forces in Cosserat
elasticity.

In linear micropolar elasticity, the incompatibility
equations are

ejklðvkgil CeikmkmlÞZaij and ð5:8Þ
ejklvkkil ZQij : ð5:9Þ

By differentiating, we obtain the conservation laws for
the dislocation and disclination densities

vjaijK eijkQjk Z 0 and ð5:10Þ

vjQij Z 0; ð5:11Þ

which mean that the disclination density tensor is
divergence free in the second index and the divergence
of the dislocation density tensor is determined by the
skew-symmetric part of the disclination density tensor.
If no dislocations and disclinations are present, the
micropolar distortion is given in terms of the gradient of
a displacement ui and a micro-rotation vector 4i and
the wryness is just the gradient of the micro-rotation

gij Z vjui Ceijk4k and ð5:12Þ

kij Z vj4i: ð5:13Þ

In addition, the electromagnetic fields have the
potentials

Ej Z vjV and ð5:14Þ

Bj Z ejklvkAl ; ð5:15Þ

whereV denotes the electrostatic potential andAl is the
magnetic vector potential.

In the case of material linearity, the energy density is
given by

w Z
1

2
gijCijklgkl CgijBijklkkl Cgijl

gE
ijk Ek

Cgijl
gH
ijk Hk C

1

2
kijAijklkkl Ckijl

kE
ijk Ek

Ckijl
kH
ijk Hk C

1

2
Ei3ijEj CEil

EH
ij Hj

C
1

2
HinijHj ; ð5:16Þ

in terms of the fields: the elastic micropolar distortion
gij, the elastic wryness kij , the electric field Ej and the
magnetic field Hj. Here the micropolar elastic tensors
Cijkl, Aijkl and Bijkl, the dielectric permittivity 3ij, the
magnetic permeability nij, the tensor of magnetoelectric
moduli lEHij , the tensor of piezoelectric moduli lgEijk , the
tensor of piezomagnetic moduli lgHijk , the tensor of the
piezowryness effect lkEijk and the tensor of the magnetow-
ryness effect lkHijk depend on position. Only, the
symmetries hold

Cijkl ZCklij ; Aijkl ZAklij ; 3ij Z 3ij ; nij Z nij :

ð5:17Þ
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The energy within a fixed volume of the body, over
which the integrals will be taken is

W Z

ð
wd3x: ð5:18Þ

Consequently, the constitutive equations where the
material tensors vary with position read (see also
Eringen (1999) for homogeneous media)

sij ZCijklgkl CBijklkkl Cl
gE
ijk Ek Cl

gH
ijk Hk ; ð5:19Þ

mij ZBklijgkl CAijklkkl ClkEijk Ek ClkHijk Hk ; ð5:20Þ

Dj Z l
gE
klj gkl ClkEklj kkl C3jkEk ClEHjk Hk and ð5:21Þ

Bj Z l
gH
klj gkl ClkHklj kkl ClEHkj Ek CnjkHk : ð5:22Þ
6. THE CONFIGURATIONAL FORCE FOR BONE
GROWTH AND REMODELLING

Now we construct the static EMT of a Cosserat medium,
characterized by the field equations (5.1)–(5.9), (5.17),
(5.18) and the constitutive relations (5.19)–(5.22). As in
§§2–4 for electrostatic, elastic and piezoelectric media
separately, both sides of the energy expression (5.18)with
(5.16) are subjected to the variation dZðdxkÞvk. The
result is (see also Lazar & Kirchner (2007b))

Pik ZwdikK sli �glkKmliklkKDiEkKBiHk ; ð6:1Þ

where �gijZvjuiKgP
ij and gP

ij denotes the plastic part of
the micropolar distortion tensor. It is seen that the EMT
for the quite complicated Cosserat medium is a mere
addition of the EMTs for an electrostatic (2.14) and
elastic (3.14) medium, plus the magnetic and Cosserat
terms. The complexity of the medium does not appear in
the structure of theEMT,but in the coupling between the
fields in the energy density (5.16), and the constitutive
relations (5.19)–(5.22).

Now, more important, the divergence of it gives the
configurational (material), thermodynamic forces on
the sources and inhomogeneities. The result is

Fk Z viPik ; ð6:2Þ

with
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Equation (6.3) is a sumof configurational force densities:
thePeach–Koehler force density on a dislocation density
ail in thepresence of the force stresssik (Peach&Koehler
1950), the Peach–Koehler force density on a disclination
density Qil in the presence of the couple stress mik which
is the Mathisson–Papapetrou type force density also
known from gauge theory (Gairola 1981; Maugin 1993;
Hehl et al. 1995), the Cherepanov force density
(Cherepanov 1981) on a body force fi in the presence of
themicropolar distortion �gij , the force density on a body
couple l i in the presence of the elastic wryness kij , the
force density on the force stress ski in the presence of the
plastic wryness kPli which is due to the fact that the skew-
symmetric part of the force stress is a source term of the
couple stress (see equation (5.2)), the electrostatic force
density on the electric charge q, theLorentz force density
on a current jl in the presence of a magnetic field Bk and
10 force densities on inhomogeneities like the force
density on the elastic inhomogeneity derived by Eshelby
(1951). Let us mention that the Peach–Koehler forces
due to dislocations and disclinations and also the third
part of equation (6.3) contain electric and magnetic
parts in addition to mechanical parts. Thus, the Peach–
Koehler forces are caused by stresses, electric and
magnetic fields on dislocations and disclinations in a
piezomagnetic, piezomagnetic and magnetoelectric
Cosserat medium. These electromagnetic terms could
drive the healing process and the remodelling of bones.

If there are no sources, aijZ0, QijZ0, fiZ0, l iZ0,
qZ0, jlZ0 and no plastic fields, gP

ijZ0, kPijZ0,
the configurational force is felt only by the gradients
of the elastic, micropolar, piezoelectric, piezomagnetic
and magnetoelectric constants. In this case and without
inhomogeneities, the form of the EMT in equation (6.1)
is divergence free. Without electromagnetic fields,
equation (6.1) agrees with the expression for the
so-called ‘Maxwell’s stress tensor of a Cosserat con-
tinuum’ given by Kluge (1969a). For compatible
micropolar elasticity such an expression was derived
by Lubarda &Markenscoff (2003). In addition, Pucci &
Saccomandi (1990) deduced a similar expression for
defect-free isotropic micropolar elasticity. Nikitin &
Zubov (1998) derived such tensor for finite defor-
mations of compatible micropolar elasticity (see also
Maugin (1998)).

If interfaces (where these constants are discon-
tinuous) are present, the gradient terms in (6.3)
become singular. Formula (2.18) is valid, but now
with PI

ik and PII
ik as the Eshelby stress tensors (6.1)

of the phases I and II, respectively. This formula is
the extension of Rice (1975) who derived it for phase
transformations in materials science. There the force
on the interface causes its movement during the
phase transformation.
7. APPLICATION TO BONE REMODELLING

Both the mechanical stress sij and the EMT Pij have the
dimension of an energy density (J mK3) or force per
unit area (N mK2), which are formally the same,
because JZNm, but this observation is misleading.
Since the enunciation of Wolff’s law (1884) biologists,
biophysicists and the biomechanics community were
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Figure 1. Schematic of femur, with tractions ta transmitted
from above and body (inertial) force f.
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tempted to argue in terms of stress, and not the energy–
momentum tensor. It is therefore important to clarify
the conceptual difference between the two.

The divergence of the mechanical stress is related to
an applied body force by the field equation (3.4), while
according to (3.15) with (3.16) the divergence of the
EMT gives the configurational force density on sources
and inhomogeneities present. Both equations have the
same structure and dimension, but their meaning is
different. In the field equation (3.4), the source of the
stress field, the body force density fi is prescribed
(imposed) and the differential equation must be solved
to obtain the stress field sij everywhere. Once this has
been done, the EMT Pij is constructed according to
(3.14), and its divergence, according to (3.15) and
(3.16), gives the configurational force felt by the force fi
due to the stress field present. More generally, the line
of argument goes from sources of the field (body forces,
dislocations, disclinations, charges and currents) to the
fields, which are solutions of the field equations. From
these solutions, the EMT is constructed everywhere,
and its divergence, in turn determines the configura-
tional forces on field sources and material inhomogene-
ities. Fracture mechanics is a simple illustration of this
remark: the loadings are prescribed, the stress fields
computed and the crack extension force is obtained via
the two-dimensional version of the EMT (Cherepanov
1967; Rice 1968).

Under a given loading of a body, say by a point force
or surface loading, in linear elasticity the stress is
proportional to the loading, and, due to Hooke’s law,
the energy density (and the other terms in the EMT as
well) are quadratic in the loading.

Inspection of the resulting configurational forces
(6.3) is very revealing: the first terms, the configura-
tional forces on the field sources, in bone that would be
dislocations aij, disclinations Qij and electric charges q,
are proportional on any external loading or applied
electric and magnetic field. On the other hand, the last
10 terms, the ‘material’ forces acting on inhomogene-
ities (where the elastic, electric, piezoelectric and
Cosserat constants vary with position) are quadratic
in the external loading.

At present, a concrete mechanism how dislocations
and disclination could act in remodelling has not yet
been envisaged, but if they play a role, their action
should be proportional to the loading. The other way
round, if physiologically stress is considered as import-
ant, that indicates that defects are essential for
remodelling. More likely seems the hypothesis that
deterioration of bone quality causes a material change
with ensuring changes in the constitutive laws, thereby
producing inhomogeneities. If remodelling is connected
with these, their action should be proportional to the
square of the stress (the energy). One concludes that, if
defects matter, the thermodynamic driving force is
linear in the applied loads (or electric and magnetic
fields); if inhomogeneities matter, the thermodynamic
driving force is quadratic in the applied loads (or
electric and magnetic fields).

In the context of bone, the configurational (material)
forces on interfaces between two microstructural
entities (osteons and cement lines, etc.) cause an
J. R. Soc. Interface (2008)
interfacial shift. The analogon of a phase transfor-
mation in materials is growth (or remodelling) in bone.
Since the material constants in bone are not known,
even not order of magnitude wise, it is difficult to judge
the magnitude of the forces driving growth. It is,
however, clear that the configurational forces acting on
interfaces are quadratic in the fields present.
8. A QUANTITATIVE ESTIMATE:
INHOMOGENEITY AND RATE EFFECTS

As simple, but instructive example we compare the
magnitude of the Eshelby and the Cherepanov terms in
(3.16) for an approximately modelled femur (see
figure 1). Since the piezoelectric and Cosserat coupling
constants have never been measured, we restrict the
argument to classical elasticity of §3. Because real
strain distribution is very complicated indeed, we
assume that the diameter of the femur is small
compared with its length. All three- and two-dimen-
sional effects are neglected, only the normal stress s33
and distortion b33 in the vertical direction need to be
considered and we can suppress the indices. In the
inferior epiphysis of height H, Young’s modulus is
supposed to vary sinusoidally with an amplitude
A and a wavelength l like EZE0CA sinð2pz=lÞ.
The maximum gradient of the Young modulus is
dE=dzZ2pA=l.

In the diaphysis, there are volume force densities f
due to gravity (gZ9:81 m sK2) and dynamical ones,
fZrðgCaÞ. In typical movement, the acceleration a is
approximately 10 times greater than g. The load
transmitted from the diaphysis of length L is trans-
mitted by a traction taZLrðgCaÞ, where L must be
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taken longer than the actual femur to account for the
weight of the anatomy above. Within the metaphysis,
the distortion b(ta) due to the traction ta is of the order
of ta/E or bðtaÞZLrðgCaÞ=E. The distortion b( f ) due
to the body force density f is of the order of s( f )/E, if
s( f ) is the stress. On the average, the stress balances
the total body force density, s( f )ZfH, which gives,
order of magnitude wise bðf ÞZHrðgCaÞ.

According to equation (3.16), the Cherepanov
force is fbZ ½rðgCaÞ�½LrðgCaÞCHrðgCaÞ�=EZ
½rðgCaÞ�2ðLCHÞ=E and the Eshelby force is
b2ðdE=dzÞZ ½LrðgCaÞCHrðgCaÞ�2!2pA=l. The
ratio of the Eshelby configurational and the Cherepa-
nov configurational forces is therefore: ðLCHÞ!
2pA=El. If one takes, reasonably enough, the ampli-
tude to be AZE=2p, the Eshelby configurational force
is a factor ðLCHÞ=l larger than the Cherepanov one.
Certainly LOH, and can be taken of the order of 1 m to
account for the rest of the skeleton. The inhomogeneity
scale l is the lamellar thickness within an osteon, 3 mm
(Gupta et al. 2006), or the thickness of the cement lines,
which is about the same. One reaches the conclusion
that the Eshelby force on inhomogeneities is a factor
L/l, or 300 000 times larger than the Cherepanov force.

The absolute value of the thermodynamic driving
force acting at material inhomogeneities is, therefore, of
the order of FthermoZðsaÞ2=El. The stress sa is
approximately 100 MPa, Young’s modulus approxi-
mately 10 GPa and, with lZ3 mm one obtains a value
of FthermoZ300 GN mK3, independent of the sign of the
stress present. This is much larger than the force
density due to gravity, which is 104 N mK3 for a bone
density rZ1, or 10 times as much during physical
exercise.1

The expression (3.16) for the EMT, derived for static
fields, remains valid for the dynamic situation where
inertia effects exist. It suffices to add the inertial force
r€ui to the body force as it occurs in the Cherepanov
term, as the ‘static’ form of the EMT remains valid also
for inertial forces. Since inertia forces are proportional
to acceleration, their preponderance in the Cherepanov
part of the configurational force imply, and allow for,
the existence of rate effects as observed by Mosley &
Lanyon (1998). They demonstrated that not only the
time average of the load matters but also the actual
functional time dependence. Contrary to superficial
appearance, our final result for growth and remodelling
rates, equation (9.2), contains such rate effects; they
enter as inertial forces proportional to acceleration, in
the thermodynamic driving force, the square of these
accelerations appears and is then time averaged
through the biological response function. Not the
load, but the stimuli are time averaged.
1Instructive is the example of a bilayer plate, with an Eshelby force on
the interface. The strains are b(i )Zsa/E(i ),iZ1, 2, the only nonzero
component of the EMT is P33(i )Z(sa)

2/E(i ) and its discontinuity
across the the interface is [P33]Z(sa)

2[1/E(1)K1/E(2)]ZK
2(sa)

2/E(1) if E(2)ZE(2)/2. Compared with the applied stress sa,
the Eshelby force on the interface is 2sa/E smaller, but quadratic in
the stress. Independent of the sign of the stress, the interface is always
driven in the direction of the softer medium, in order to minimize the
total stored energy.
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9. DISCUSSION

Analytic computation of the fields, like stress sij,
distortion bij, electric field Ej, electric displacement Dj

and magnetic field Bj as function of the sources, like
body loading fj, body moment l j and electric charge is
practically impossible for any geometry of reasonable
complexity and interest. Numerical methods must be
used to compute Green’s functions that relate the
fields to the sources. A few conclusions can be drawn
without explicit calculation. In spite of the same
dimensions, mechanical stress (NmK2), energy density
and EMT (Nm mK3), behave qualitatively different.
In linear elasticity, the realm of the present investi-
gation, stress is linear in the applied load, while the
energy density and the EMT are quadratic in the load.

This remark pertains to the growthmodel transcribed
fromplasticity theory (Epstein&Maugin 2000),where a
‘transplant’ tensor KK1(Cowin et al. 1992; Fung et al.
1993; Rodriguez et al. 1994; Imatamin & Maugin 2001)
describes the change from (1Cb) to (1Cb)K. An
evolution law _K½K;P; b; db=dt� was formally suggested.

In simpler terms, growth can be described by a
spontaneously created distortion rate db=dt. According
to our results, it is not P, but its divergence, the
thermodynamic force, that controls its evolution. The
evolution law for db=dt must be of div PZFthermo over
time. In linearized form that becomes

db=dt Z

ðt
t 0
Gbioðt; t 0ÞFthermoðt 0Þdt 0: ð9:1Þ

The biological response function Gbioðt; t 0Þ derives from
irreversible thermodynamics. If explicit age effects are
neglected, so that bone development does not vary with
the age of the subject, the response becomes a
convolution of time:

db=dt Z

ðt
t 0
Gbio½ðtKt 0Þ=t�Fthermoðt 0Þdt 0: ð9:2Þ

Neither the time scale t is known, nor the functional
dependence of Gbio on ½ðtKt 0Þ=t�; it might be exponen-
tial. Biological response is slow compared with rate
effects in loading. This biological response is the
problem of mechanotransduction on the cellular level
and beyond the scope of this paper. It might, however,
be surmised that for small stimuli the response between
stimulus and effect should be linear. This makes a
square root biological response to the stimulus, which is
quadratic in the load, unlikely and rules out linearity
between applied force and growth. The essential point
is that already the thermodynamic stimulus is quad-
ratic in the load. Equation (9.2) resolves an apparent
contradiction. Presumably, the response function Gbio

is slow compared with the time scale of loading rates,
amounting to a time average over Fthermo, which itself is
proportional to the square of the loading accelerations.
It follows that db=dt contains rate effects, in agreement
with experimental findings (Mosley & Lanyon 1998).
10. CONCLUSION

In the expressions for the thermodynamical driving
force that triggers growth and remodelling, there are
terms linear, and terms quadratic in the applied load.
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The latter, which dominate the former, act at material
and structural inhomogeneities, like interfaces between
lamellae or cement lines. The biological response to
these is unknown, but it can be surmised that the
formation of old with new bone starts at these
inhomogeneities. Nucleation is heterogeneous and not
randomly homogeneous anywhere in the material.

The analogy with phase transformations in solids is
valid insofar as one structure is replaced by another
one. In solids, this happens by chemical reaction,
diffusionless (martensitic) or diffusive transformations;
the formation of a new phase might proceed via a sharp
well-defined interface, or by slow interpenetration and
the formation of diffuse interfacial regions (like in
spinodal decomposition). In solid-state physics, a wide
variety of transport processes responds to a thermo-
dynamic driving force. Similarly, in bone we consider
the thermodynamic driving force as cause of growth
(via the detour of cartilage and subsequent ossification)
and remodelling (the exchange of old against new
bone). Consequently, they need not involve a phase
transformation front in the form of a sharp interface,
but proceed by replacement.

One day, physiological test might be able to
distinguish if bone growth is linear or quadratic (as
we predict) in the loading. As of now, no such
experimental results are available. At present, one
can only compare with mechanical simulations, as those
of Huiskes et al. (2000) and Weinkamer et al. (2004).
These model growth to be proportional to the strain
energy density and strain, with specified response
Gbio—as in (9.2). However, deconvolution of the causal
and the response parts is notoriously difficult in such
simulations, where both are varied as long as reasonable
and agreeable similarity between calculated and
natural structure is obtained. One might assume the
pessimistic attitude, that from such simulations the
validity of our hypothesis can be neither confirmed nor
refuted convincingly.

In conclusion, in accordance with Wolff’s law (1884,
1862, 1986), there exists a well-defined thermodynamic
driving force, a vector, which we believe to cause
biological activity. We derived explicitly the form of
this vector in terms of stress and strain (and higher-
order mechanical quantities for more sophisticated
constitutive laws). It is the divergence of the EMT
familiar to physicists.

This is a configurational mechanical force vector
acting on bone defects and inhomogeneities. It is not the
mechanical stress tensor itself, nor the divergence of the
stress (which is the body force). Clearly, therefore, the
body force density is not directly causing remodelling,
but acts through the divergence of the EMT
(a quadratic form in stress or strain), a concept familiar
from solid mechanics (Eshelby 1951; Rice 1968) and
physical field theories in general (Morse & Feshbach
1953; Barut 1964).

Quantitative comparisons strongly suggest that the
driving force is greatest at bone inhomogeneities. In
accordance with experimental evidence, not only
loading but also the rate of loading has an influence
on the driving force. This is simply due to the fact
that the driving force is proportional to the sum of
J. R. Soc. Interface (2008)
static loading plus inertial loading, which, for example
in walking, is approximately five times larger.
Surprisingly, this simple explanation that inertial
loading implies rate effects has never been mentioned
in the literature. The quadratic dependence means
that tension and compression, and loading and
unloading produce the same stimulus. Since the
thermodynamic driving force is a mechanical quan-
tity, it is in principle locally measurable and
controllable. Our hope is, that, with the characteristic
features of the thermodynamic driving force once
identified, more specific experiments on the biological
response can be envisaged. What needs to be
measured is not the externally applied force, but the
local stresses and strains in situ.

We summarize our three main results as follows.

(i) Growth and remodelling in Wolff’s sense
respond not directly to the mechanical loading,
but to the thermodynamic driving force (the
divergence of the EMT).

(ii) The preponderant term in this thermodynamic
driving force, quadratic in the loading, stems
from acceleration (initial) and not static loading.
This observation explains the positive rate
effects actually observed (Mosley & Lanyon
1998). It is the time average of the thermo-
dynamic driving force and not the time average
of the actual loading that matters.

(iii) This thermodynamic driving force is likely to be
greatest at structural inhomogeneities in bone,
where the material constants change. Thus,
biological activity is expected to be non-
uniform.

M.L. has been supported by an Emmy–Noether grant of the
Deutsche Forschungsgemeinschaft (grant no. La1974/1-2).
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